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Abstract 

A general expression for the diffracted intensities from 
an aggregate of partially disordered layer structures 
consisting of plane lattice layers displaced randomly 
along a and b by arbitrary fractions a/qa and b/qb has 
been worked out. The approach is similar to that of 
Wilson [X-ray Opt&s (1962). London: Methuen] and 
has been followed by Ray, De & Bhattacherjee [Clay 
Miner. (1980), 15, 393]. The expression is very 
general in nature and is suitable for studying the 
variation of intensities from such crystallites with any 
amount of displacements. Numerical computations for 
several cases have been carried out and results 
discussed. It is concluded that the peak will broaden 
and background increase as the magnitudes and 
probabilities of disorder increase. 

interesting to study the effect on the diffraction pattern 
when the layer is displaced in two directions simul- 
taneously by a/qa and b/qb along a and b, where qa and 
qb are both integers. As mentioned in the previous paper 
(Ray et al., 1980) such situations are closer to reality 
and are likely to occur in several minerals with a layer 
type structure, which are prone to this type of disorder 
because of their structural characteristics. Wilson 
(1962) has also made an attempt to study the 
diffraction from hexagonal cobalt with displacements 
a/3 and 2b/3. However, a more general expression of 
the diffracted intensity from a disordered structure of 
the above type is expected to be very useful in 
distinguishing between conglomerations of layer 
crystallites with different types of displacement and 
perhaps to estimate the magnitude of the displace- 
ments. The present work aims at fulfilling this objective. 

Introduction 

In a previous publication (Ray, De & Bhattacherjee, 
1980) a general expression for the diffracted intensities 
from a partially disordered layer structure with a 
displacement has been worked out. The displacement, 
as is commonly found in minerals, consists of a 
one-dimensional shift of a layer parallel to the adjacent 
layers by an arbitrary fraction b/q along the b axis, 
where q is any integer. This expression is quite suitable 
for investigating the nature of the diffraction pattern 
from the layer structure when the displacement is 
gradually changed by any fraction of the axial length b 
in this direction. It would be more general and 
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Theory 

The present derivation is based primarily on the model 
of disordered crystals with plane lattice layers as 
described in the previous work (Ray et al., 1980). Here 
too the layers are taken to be parallel to the ab plane 
with c perpendicular to the layer. The disorder consists 
of shifts of the layer parallel to itself by a/q a and b/qb 
along a and b respectively, where qa and qb are integers. 
All symbols used carry the usual meaning as in the 
previous publication (Ray et al., 1980). 

Let the shift of a layer be a/q a along the a axis and 
the probability of such shift be a. Corresponding 
quantities in the b direction for a layer are taken to be 
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b/qb and ft. Then, as in Ray et al. (1980), here too we 
can write 

and 

1[ ( q)m] 
a R m : m  1 + ( q a - -  1) 1 - - a  ( la )  

qa qa-  1 

1 [  ( q a a )  m ] 
a W m = - -  1 - -  1 (lb) 

q~ qa-  1 

Likewise, 

aRm + (qa- I ) a w  m = 1. (lc) 

and 

1[ ( )m] 
OR m : -  1 + (qb- 1) 1 fl 

qb q b -  1 

O W r n l [  ( qo )m] - - - -  1--  1 fl 
qb q b -  1 

bRm + (qb- 1)OW n = 1. 

(2a) 

(2b) 

(2c) 

Here aR m and aw m are the probabilities of the mth 
added layer being in the right and wrong place 
respectively when the displacements are a/qa in the a 
direction only. Similarly, OR m and b w m denote cor- 
responding probabilities when the displacements con- 
sist of only b/qb along b. Considering all possible right 
and wrong places that the mth layer may occupy, we 
get 

[aR m + (q~-- 1)alYm][bR m + (qb-- 1)bw m] = 1. (3) 

× exp 2~zi-- +exp  2 ×  + - . .  
qa ] 

h +ex [ qa 
xexp  2zci + exp 2 × 2 r r i  + . . .  

[ k]) + exp (qb-- 1)2zci-- , 
qb 

(4) 

where h and k are the indices of reflections and F is the 
structure factor of a normal layer. With (1) and (2) the 
above expression can be simplified to 

Jm=F2{[1--(qa - 1) aWm l 

s in [ (qa -  1)~h/q a] } 
+ aWm sin(nh/q~) exp (7~ih) 

× {[1 -- (qb-- 1) b w  m] 

bWm sin [ (qo -  1)rck/qb] ] + 
sin (7rk/qb) exp (Trik)). (5) 

From (1 b) we get 

[1 - -  (qa - -  1) ~ W  m] + ~ W  m 
sin [(q a -- 1)~h/q a] 

sin (nh/qa) 
exp (nih) 

Following a similar procedure and using the same 
symbol as in Ray et al. (1980), we can write the 
average value of the structure factor for two layers 
separated by m interlayer distances as 

Jm =F2aRmbRm + F2~RmbWm exp 2zci k 
\ qb/ 

+exp  2×27r i  + . . .  

[ k]) + exp (qb -- 1) 2zci--  + a w  m bR m 
qb 

× exp 2 z c i  +exp  2 × 2 ~ z i - -  + . . .  
\ qa] qa 

[ h]l 
+ exp (qa -- 1)2zri-- + aw m bw n 

qa 

=A(h,qa)-(1 - 7)m[A(h,qa)- 1], (6) 

where 

A(h,qa) = ( 1 + 
sin [(qa - 1)zrh/qa] 

sin ( h/qa) 
1 

exp (zcih) } -~a 

and 
qa 

~ - - - a .  
qa-- 1 

Similarly, with (2b) we obtain 

[ 1 -  (qb-- 1) b w  m] + bw m 
sin [(qb -- 1)~zk/qb] 

sin (~k/qb) 
exp (rcik) 

=A(k, qb)- (1 - -  ~ m [ A ( k ,  q b ) - -  1], (7) 

where 

qb ~ _ m p .  
qo-- 1 
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From (6) and (7), (5) t ransforms to 

J m =  F E { A ( h ,  qa ) - -  ( 1 -  y )m[A(h ,qa) - -  1]} 

x {A(k ,  q b ) - ( 1 - ( 5 ) m [ A ( k ,  qb) - 1]}. (8) 

Following Wilson (1962), we m a y  write the intensity of 
reflection G2(0) for co = 0, where co is a variable in 
reciprocal space denoting distance from an exact 
reciprocal-lattice point, as 

G2(0) = N J  o + 2 ( N -  1)J 1 + 2 ( N -  2 )J  2 

+ . . .  + 2JN_ 1, (9) 

which is similar to (9) of  our previous paper  (Ray et al., 
1980). Substitution of values of  J m from (8) t ransforms 
G2(0) or intensity I (0)  to 

G2(0) = F Z A ( h , q a ) A ( k ,  qb) {2[N + ( N -  1) + ( N -  2) 

+ . . .  + 1 ] - N }  - F 2 A ( k ,  qb) 

x {A(h ,  qa ) -  1} {2N[1 + ( 1 -  y) 

+ (1 - -  ),,)2 . + . . . . . O r .  (1 -- y)U-1] - - N }  

--  FeA(h ,qa )  {A(k ,  qo) - 1} 

x {2N[1 + ( 1 - 6 )  + (1 _ 6 ) 2  

+ . . .  + (1 - -  6 )N-1] - -N}  

+ VZ{A(h ,qa)  - 1} {A(k ,qa  ) --  1} 

× {2N[1 + ( 1 -  y) ( 1 -  6) 

+ (1 -- y)2 (1 -- 6) 2 

+ . . .  + (1 -- y)N (1 -- 6)2v1- N}. (10) 

Assuming  

1 1 1 
N ~ -  > -  > (11) y ~ J  ~ y + J  

a n d 0 < y <  1 , 0 < f i <  1, s u c h t h a t y + f i > > y J ,  w e c a n  
further simplify the intensity expression to 

G2(0) = F 2 N 2 A(h ,qa  ) A ( k ,  qb) 

--  F 2 A ( k ,  qb){A(h ,qa)  - 1} 
N ( 2 -  y) 

- F 2 A ( h , q ~ ) { A ( k ,  q b ) -  1} 
N ( 2 -  6) 

+ F2{A(h ,qq)  - 1 } { A ( k ,  q b ) -  1} 

N ( 2 -  y + 6) 
× (12) 

y + J  

We now try to evaluate the intensity G2(02) = 1(o2) 
for any arbitrary value of the reciprocal-space variable 
02 (02 4= 0). Proceeding as in the previous work (Ray et 
al., 1 980), we can write the intensity as 

1(02) : 6(02) 6*(02) 

= r  2 + F  2 + v  2 + . . .  + , F  2 

+ 2 cos 2~z02(F 1 F  2 + F 2 F 3 + F 3 F 4 

+ . . .  + FN_ I FN) 

+ 2 COS 47~02(F1F 3 + F z F4 + F3 F5 

+ . . .  + FN_eFN) 

+ 2 COS 67~02(F 1 F  4 + F 2 F 5 + F 3 F 6 

+ . . .  + FN_aFN)+  . . .  

+ 2 COS 2 ( N - -  1) zc02F 1 F  u 

= N J  o + 2 ( N - -  1)J1 cos 27r02 

+ 2 ( N -  2) Jz cos 4~z02 

+ 2 ( N - -  3) Ja cos 67~02 

+ . . .  + 2 x  1 X J N _ l C o s 2 ( N - 1 ) ~ z 0 2 .  (13) 

Substitution of  the value of  Jm from (8) t ransforms (1 3) 
to 

I(02) = V 2 A (h, qa ) A (k, qb ) 

x [N + 2 ( N -  1) cos 2zc02 

+ 2 ( N - -  2) cos 4~z02 + . . .  

+ 2 x 1 x cos 2 ~ ( N - -  1)o2] 

- V 2 A ( k , q  b) {A(h ,  qa) - 1} 

x [N + 2 ( N - -  1)(1 -- y) cos 27~02 

+ 2 ( N - -  2)(1 -- y)z cos 4~z02 

+ . . .  + 2 x 1 x (1 -- y)N-1 COS 2 ( N - -  1)zc02] 

-- r 2 A ( h , q a )  {A(k ,  qb) - 1} 

x IN + 2 ( N - -  1)(1 -- 6) cos 2~02 

+ 2 ( N - -  2)(1 - 6)2 cos 4zr02 

+ . . .  + 2 x 1 x (1 - 6)N-1 COS 2 ( N - -  1)~z02] 

+ VZ{A(h ,  qa) - 1} {A(k ,  q b ) -  1} 

x [N + 2 ( N - -  1)(1 - y + 6) cos 27r02 

+ 2 ( N - -  2)(1 - y + j)2 cos 4zc02 

+ . . .  + 2 x  1 x ( l - y + 6 )  N-1 

x cos 2 ( N - -  1)~z02]. (14) 
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Applying the assumptions of  (11) we can write (14) as 

I(o9) = F 2 A (h,qa ) a (k ,  qt,) 

/ [ x 2 N c o s ( N - -  1)zrco 
sin zcco 

1 sin 2 ( N - -  1)zrco 
+ -  

2 sin 2 zrco 

N - - 1  s in (2N- -1 )zcco]  } 2  sin zrco - - N  

- -  F 2 A ( k ,  qb ){A(h ,  qa) - 1} 

i - (1 - y) cos 2zoo9 ] 
2 N  - N  ] 1 -- 2(1 -- y) cos 2zcc.o + (1 -- y)2 

- F 2 A ( h , q a ) { A ( k ,  qb) - 1} 

[ 1 - (1 - ~ cos 2zrco ] 
× 2 N  - N  

1 -- 2(1 - ~ cos 2rcoo + (1 - ~2 

r 2 { A ( h ,  qa) - l } { A ( k ,  q b ) -  1} 

1 -- (1 -- y + 6) cos 2zcco 
2 N  

N] 
1 - 2 ( 1  - y + 6 )  c o s  2 zcco + (1 - y + 6 )  2 

(15) 

10 ° 

/ (co) 
,r (0) 

T 

10-t  

10-2 

l0  -3 i 
--'50 -.4'0 -.3'0 -.2'0 --1.0 () "10 .10 "3'0 -4.0 -50 

Fig. 1. I(oo)/I(O) versus to for different values of q~, qb. "a = fl = 
0.05. × qa = 2, qb = 2; • qa = 3 ,  qb = 3; A qa = 4, qb = 4. 

Equation (15), which is very similar to equation (16) of 
Ray  et at. (1980) gives the intensity variation with 09 
from a disordered crystallite with displacements a/qa  
and b/qb along the a and b axes. However,  this 
expression contains two more t e rms-one  giving the 
contribution of  one additional displacement (a /qa or 
b/qb) and the other, the last term, the joint  contribution 
of both the displacements.  

S p e c i a l  c a s e s  

Let us now consider some special cases of  the general 
equation (15) in order to understand the significance of  
the different terms more comprehensively.  

C a s e  I. Let us first consider the case when h = nqa 

and k - n t qb, n and n p both being integers. Under  these 
conditions (15) can be shown to become 

I(o)) = F 2 2 N - -  cos ( N - -  1)rre) 
sin rrw 

1 s in2(N - 1)~co 
+ -  

2 sin 2 ~o) 

N - - 1  s i n ( 2 N - 1 ) z c c o ]  } 
- N .  (16) 

2 sin z~w 

10 o 

10-1 

/ (~o) 
i (o) 

T 
10-2 

10-3 
-.50 -.4'0 -.3'0 -.2'0 - .  1'0 ~) • 1.0 -10 .3'0 -4'0 .50 

(.O l, 

Fig. 2. 1(o9)/1(0) versus to for different values of a, ft. qa = 2, qb = 
3. A a =  0.1, fl = 0.1; × a =  0.05, fl = 0.05; • a =  0.03, fl = 
0.03. 
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This expression is free from defect and the terms 
containing defects vanish. This is identical with the case 
for k = qn in Ray et at. (1980) as expected. 

Case II. For h = nqa ~ k = n' qb. + 1, the situation is 
analogous to that of (16) of Ray et al. (1980) when k = 
nq + 1. Here too we get, under the above conditions, 

6 ( 2 -  6) 
I(a~) = NF 2 , (17) 

1 -- 2(1 -- 6) cos 2zro9 + (1 - -  6 ) 2  

which is, as expected, identical with (19) of Ray et al. 
(1980). This shows that for this type of reflection, the 
intensity will be unaffected by a displacement in the a 
direction but will be affected by b-axis displacements. 

Case III. When h = nqa +_ 1, k = n' qb, the situation 
becomes almost similar to that of case II except that the 
intensity is now affected by a displacement and remains 
unaffected by b-axis disorder. Equation (15) reduces to 

),(2- ),) 
1(o9) = NF  2 (18) 

1 - 2(1 - ),) cos 2zro9 + (1 - ),)2" 

Both (17) and (18) will on simplification reduce to 
equation (6) of Wilson (1962). 

Case IV. h = nqa + 1 and k = nqb + 1. This is the 
most general case when both the displacements will 
manifest themselves in the observed intensity which will 
be given by 

I(o9) = N F  2 
(y + 6 ) ( 2 -  ), + 6) 

1 -- 2(1 -- ), + b') cos 2no9 + (1 - ), + 6)2 

(19) 

Numerical computations and discussion 

Numerical computations for different values of a, fl and 
qa, qb have been carried out for reflections h = nqa +_ 1 
and k = n' qb 4-_ 1 which correspond to case IV. Hence, 
(19) was used for these calculations. The results of the 
calculation for different cases have been shown in Figs. 
1 and 2. Fig. 1 shows that all the curves are 
symmetrical and have the same general features. Only 
the sharpnesses of the relative intensity peaks increase 
as the magnitudes of the displacements, i.e. a/qa and 
b/qb, both decrease-an observation similar to that of 
Ray et al. (1980). Similarly, Fig. 2 reveals that the 
peaks of the relative intensities corresponding to a fixed 
value of qa, qb become broader and background more 
enhanced as the probabilities, i.e. a and fl, increase. 
These are expected results, as an increase in the values 
of a and fl and a decrease in the values of qa and qb 
obviously mean that the magnitude and probability of 
shift both increase and hence the crystal becomes more 
defective. 

Thus the general conclusion is that the magnitude 
and the probabilities of the defect will not only broaden 
the peak but increase the general background as well. 
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Abstract 

The lattice energy of isolated, regular tetrathia- 
fulvalene (C6H484) and tetracyanoquinodimethane 
(C12H4N4) segregated and mixed stacks was minimized 
for four structural parameters; a longitudinal and 
transverse slip of neighbouring molecules relative to 
each other, a rotation of a neighbouring molecule 
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perpendicular to the molecular planes and the perpen- 
dicular distance between two neighbouring molecules. 
The van der Waals and repulsive interactions only were 
calculated from atom-atom potentials. The absolute 
minima of the lattice energies were achieved at stack 
structures slipped longitudinally with all stack 
parameters deviating less than about 0.1 A from their 
observed mid-range values. The mixed stack proved to 
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